Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582709

RESUMO

STATEMENT OF PROBLEM: The outcome of photopolymerized 3-dimensional (3D) printing is influenced by the methods used for postprinting cleaning, yet information on postprinting cleaning is sparse. PURPOSE: The purpose of this in vitro study was to assess the cleaning efficiency and surface and mechanical properties of 3D printed resin according to postprinting cleaning methods. MATERIAL AND METHODS: Specimens were fabricated from a 3D model using resin materials (NextDent C&B MFH and DIOnavi-P. MAX) and were tested for postprinting cleaning methods for 5 minutes with isopropyl alcohol, isopropyl alcohol + ultrasonic, ethyl alcohol, ethyl alcohol + ultrasonic, and ultrasonic alone. Postpolymerization was followed for 5 minutes. The cleaning efficiency, microcomputed tomography (µCT), surface roughness, Vickers hardness, and flexural strength of the specimens were evaluated. The 1-way ANOVA test was performed after considering normality. A post hoc analysis with Bonferroni was also performed (α=.008 or.005). RESULTS: Ultrasonic in addition to cleaning solutions significantly improved the cleaning efficiency in NextDent C&B MFH specimens (P<.005), whereas ultrasonic did not affect the efficiency in DIOnavi-P. MAX specimens. No significant differences were found in surface roughness by postprinting cleaning methods in either NextDent C&B MFH or DIOnavi-P. MAX (P>.005). No significant changes in surface hardness were observed by postprinting cleaning methods (P>.008). In the NextDent C&B MFH, ethyl alcohol + ultrasonic significantly decreased the flexural strength (P<.005). There were no significant differences in the flexural strength in the DIOnavi-P. MAX (P>.005). CONCLUSIONS: Ethyl alcohol was comparable with isopropyl alcohol for use as a postprinting cleaning solution for both NextDent C&B MFH and DIOnavi-P. MAX. The addition of ultrasonic to cleaning solutions should be applied with caution. These findings suggest that different postprinting cleaning methods can be recommended depending on the 3D printed resin materials.

2.
Materials (Basel) ; 14(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442895

RESUMO

Conventional pervious pavement materials (PPM) that consist of cement and aggregate materials are known for poor durability due to their brittle behavior. Thus, to enhance the durability, we fabricated polymeric PPMs from durable and abundant polyurethane (PU) and undertook mechanical and microscopic characterizations. PU-based PPM samples with varying aggregate sizes were produced and examined to test their compressive strength and water permeability. Furthermore, X-ray micro-computed tomography (micro-CT) was implemented to analyze the samples' pore and tortuosity characteristics. Through the micro-CT analysis, the morphological characteristics of PPM's internal structures were identified and quantitively analyzed the correlations between the pore size distribution, connectivity, and tortuosity within the samples. Finally, the microstructures derived from micro-CT were generated as a finite element model and also numerically determined the stress distribution generated inside.

3.
J Periodontal Implant Sci ; 49(4): 228-236, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485373

RESUMO

PURPOSE: The purpose of this study was to evaluate the synergistic effect of adjunctive hyperbaric oxygen (HBO) therapy on new bone formation and angiogenesis after 8 weeks of healing. METHODS: Sprague-Dawley rats (n=28) were split into 2 groups according to the application of adjunctive HBO therapy: a group that received HBO therapy (HBO group [n=14]) and another group that did not receive HBO therapy (NHBO group [n=14]). Each group was divided into 2 subgroups according to the type of bone graft material: a biphasic calcium phosphate (BCP) subgroup and an Escherichia coli-derived recombinant human bone morphogenetic protein-2-/epigallocatechin-3-gallate-coated BCP (mBCP) subgroup. Two identical circular defects with a 6-mm diameter were made in the right and left parietal bones of each rat. One defect was grafted with bone graft material (BCP or mBCP). The other defect was not grafted. The HBO group received 2 weeks of adjunctive HBO therapy (1 hour, 5 times a week). The rats were euthanized 8 weeks after surgery. The specimens were prepared for histologic analysis. RESULTS: New bone (%) was higher in the NHBO-mBCP group than in the NHBO-BCP and control groups (P<0.05). Blood vessel count (%) and vascular endothelial growth factor staining (%) were higher in the HBO-mBCP group than in the NHBO-mBCP group (P<0.05). CONCLUSIONS: HBO therapy did not have a positive influence on bone formation irrespective of the type of bone graft material applied after 8 weeks of healing. HBO therapy had a positive effect on angiogenic activity.

4.
J Periodontal Implant Sci ; 49(1): 2-13, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847252

RESUMO

PURPOSE: The aim of this study was to conduct a histologic evaluation of irradiated calvarial defects in rats 4 weeks after applying fibroblast growth factor-2 (FGF-2) with hyaluronan or biphasic calcium phosphate (BCP) block in the presence or absence of adjunctive hyperbaric oxygen (HBO) therapy. METHODS: Twenty rats were divided into HBO and non-HBO (NHBO) groups, each of which was divided into FGF-2 and BCP-block subgroups according to the grafted material. Localized radiation with a single 12-Gy dose was applied to the calvaria of rats to simulate radiotherapy. Four weeks after applying this radiation, 2 symmetrical circular defects with a diameter of 6 mm were created in the parietal bones of each animal. The right-side defect was filled with the materials mentioned above and the left-side defect was not filled (as a control). All defects were covered with a resorbable barrier membrane. During 4 weeks of healing, 1 hour of HBO therapy was applied to the rats in the HBO groups 5 times a week. The rats were then killed, and the calvarial specimens were harvested for radiographic and histologic analyses. RESULTS: New bone formation was greatest in the FGF-2 subgroup, and improvement was not found in the BCP subgroup. HBO seemed to have a minimal effect on new bone formation. There was tendency for more angiogenesis in the HBO groups than the NHBO groups, but the group with HBO and FGF-2 did not show significantly better outcomes than the HBO-only group or the NHBO group with FGF-2. CONCLUSIONS: HBO exerted beneficial effects on angiogenesis in calvarial defects of irradiated rats over a 4-week healing period, but it appeared to have minimal effects on bone regeneration. FGF-2 seemed to enhance new bone formation and angiogenesis, but its efficacy appeared to be reduced when HBO was applied.

5.
Oral Dis ; 25(3): 822-830, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633848

RESUMO

OBJECTIVE: To determine the synergistic effect of parathyroid hormone (PTH) [1-34] in combination with hyperbaric oxygen (HBO) on bone graft in a rat calvarial bone defect model under impaired osteogenic conditions. MATERIALS AND METHODS: Twenty-four rats were divided into three groups. Localized radiation with a single 12 Gy dose was administered to the calvaria. Four weeks after radiation, calvarial circular defects were created in the parietal bones. All defects were filled with biphasic calcium phosphate. After the bone graft, PTH [1-34] was injected subcutaneously, and HBO was administered. At 6 weeks after the bone graft, the rats were sacrificed, and specimens were harvested. RESULTS: Histomorphometric evaluation showed that the percentage of new bone area was higher in the PTH and PTH/HBO groups than in the control group. The percent residual material area was decreased in the PTH/HBO group compared with the control group. The percentage blood vessel number was highest in the PTH group. Micro-CT evaluation showed that the new bone volume was highest in the PTH/HBO group. The residual material volume was lowest in the PTH/HBO group. CONCLUSION: Within the limitations of this study, our data indicate that PTH combined with HBO may reverse radiation-induced impairment of bone healing.


Assuntos
Oxigenoterapia Hiperbárica , Osteogênese/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Crânio/fisiologia , Crânio/cirurgia , Teriparatida/análogos & derivados , Animais , Substitutos Ósseos , Terapia Combinada , Hidroxiapatitas , Masculino , Osteogênese/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Crânio/patologia , Teriparatida/uso terapêutico , Microtomografia por Raio-X
6.
Artigo em Inglês | MEDLINE | ID: mdl-30274734

RESUMO

OBJECTIVE: Barrier membranes are important in maintaining space in guided bone regeneration process by preventing downgrowth of epithelial or connective tissue. In this study, the effects of resorbable membranes during the early stages of bone regeneration in rats with impaired bone healing capacity were investigated. STUDY DESIGN: Twenty-eight rats were selected for this study. Half of the animals were selected for radiation therapy before surgical procedure (G3, G4). Animals were assigned into 4 groups (G1-G4). A circular defect was created in the central parietal bone. It was covered with resorbable membrane in G2 and G4. After 4 weeks, the animals were sacrificed. RESULTS: At week 4, the new bone formation was observed around the margin of old bone in G1, G2 and G4 groups. Osteoclast was most abundant in the G1 group (18.3 ± 7.7) and least abundant in the G4 group (7.9 ± 4.7). The mean of osteocalcin levels in blood was the highest in the G2 group and lowest in the G3 group. Only G4 group showed significant difference in Runx2 levels between before-treatment and after- treatment. CONCLUSIONS: Bone healing is adversely affected after radiation therapy. In addition, resorbable membranes can delay healing in the early stages of bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Colágeno/farmacologia , Membranas Artificiais , Osso Parietal/efeitos da radiação , Osso Parietal/cirurgia , Cicatrização/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Periodontal Implant Sci ; 46(4): 244-53, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27588214

RESUMO

PURPOSE: The aim of this study was to characterize the healing in the grafted calvarial defects of rats after adjunctive hyperbaric oxygen therapy. METHODS: Twenty-eight male Sprague-Dawley rats (body weight, 250-300 g) were randomly divided into two treatment groups: with hyperbaric oxygen therapy (HBO; n=14) and without HBO (NHBO; n=14). Each group was further subdivided according to the bone substitute applied: biphasic calcium phosphate (BCP; n=7) and surface-modified BCP (mBCP; n=7). The mBCP comprised BCP coated with Escherichia-coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Two symmetrical circular defects (6-mm diameter) were created in the right and left parietal bones of each animal. One defect was assigned as a control defect and received no bone substitute, while the other defect was filled with either BCP or mBCP. The animals were allowed to heal for 4 weeks, during which those in the HBO group underwent 5 sessions of HBO. At 4 weeks, the animals were sacrificed, and the defects were harvested for histologic and histomorphometric analysis. RESULTS: Well-maintained space was found in the grafted groups. Woven bone connected to and away from the defect margin was formed. More angiogenesis was found with HBO and EGCG/BMP-2 (P<0.05). None of the defects achieved complete defect closure. Increased new bone formation with HBO or EGCG/BMP-2 was evident in histologic evaluation, but it did not reach statistical significance in histometric analysis. A synergic effect between HBO and EGCG/BMP-2 was not found. CONCLUSIONS: Within the limitations of this study, the present findings indicate that adjunctive HBO and EGCG/BMP-2 could be beneficial for new bone formation in rat calvarial defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...